Week 9 Functions and Relation

Worksheet 8

- 1. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by f(x) = x
 - a. Is f injective (one-to-one)? If so, prove the statement (Ch. 5.5)

b. Is f surjective (onto)? If so, prove the statement (Ch. 5.5)

- 2. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2$
 - a. Is f injective (one-to-one)? If so, prove the statement (Ch. 5.5)

b. Is f surjective (onto)? If so, prove the statement (Ch. 5.5)

- 3. Let $f: \mathbb{N} \to \mathcal{P}(\mathbb{N})$ be defined by $f(n) = \{1, 2, 3, ..., n\}$
 - a. Is f injective (one-to-one)? If so, prove the statement (Ch. 5.5)

b. Is f surjective (onto)? If so, prove the statement (Ch. 5.5)

- 4. Let $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be defined by f((x,y)) = x + 2y
 - a. Is f injective (one-to-one)? If so, prove the statement (Ch. 5.5)

b. Is f surjective (onto)? If so, prove the statement (**Ch. 5.5**)

- 5. Let $f: \mathbb{N} \to \mathbb{N}$ be defined by f(n) = n + 1 (Ch. 5.5)
 - a. Is f injective (one-to-one)? If so, prove the statement

b. Is f surjective (onto)? If so, prove the statement

- 6. Consider $A = \{1,3,5\}, B = \{3,6,8\}$
 - a. Define a function that takes elements in A to B

b. Is the function you defined injective?

c. Is the function you defined surjective?

- 7. Consider $A = \{1,3,5,7\}, B = \{3,6\}$
 - a. Define a function that takes elements in A to B

b. Is the function you defined injective?

c. Is the function you defined surjective?

- 8. Consider $A = \{1,3\}, B = \{3,6,8,10\}$
 - a. Define a function that takes elements in A to B

b. Is the function you defined injective?

c. Is the function you defined surjective?

From 6-8, what conjecture can you make about the injectivity and surjectivity regarding the size of domain and codomain?

MATH 258-02 6 Harry Yan